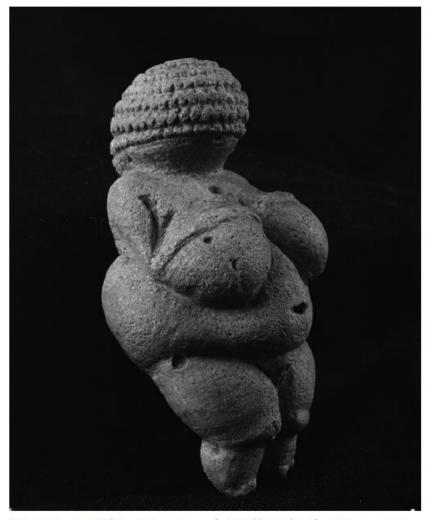
Medical therapy in obesity with focus on CKD

Nahid Hashemi Madani

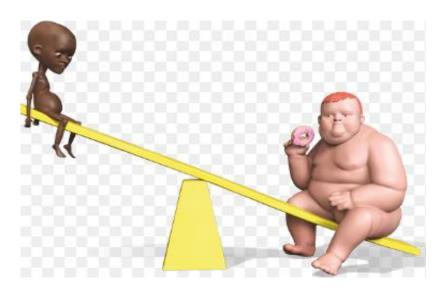
Institute of Endocrinology and Metabolism


Iran University of Medical Science

How What Was Good Became Ugly and Then Bad

Good

Figure 1. The Venus of Willendorf. Limestone figure from the Late Paleolithic Period, c. 25,000 BC (Naturhistorisches Museum, Vienna, Austria. Reproduced with permission.) Photo credit: Erich Lessing, Art Resource, NY.



Ugly

ISRAEL 13.5%

FRANCE 11.5%

JAPAN 3%

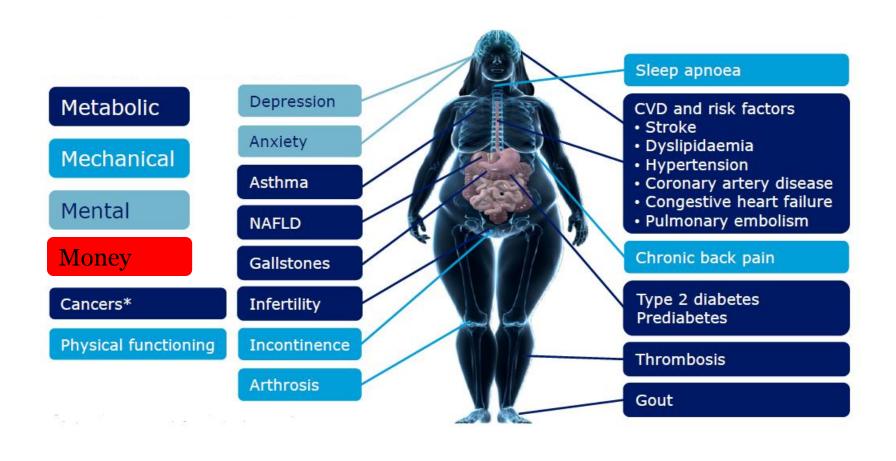
Bad

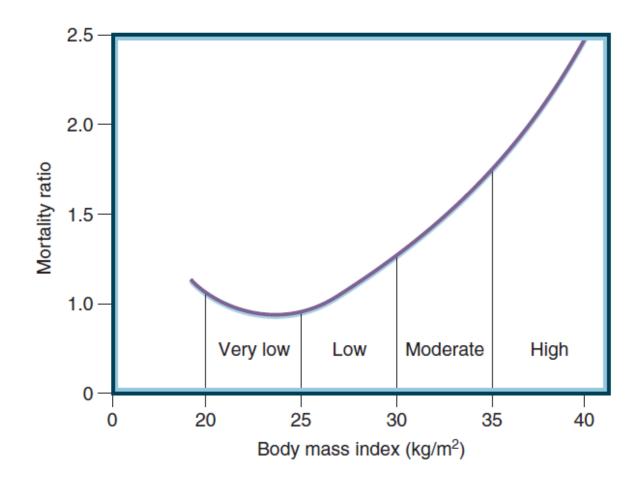
AACE/ACE 2016 Canadian Task Force 2015

EASO 2015

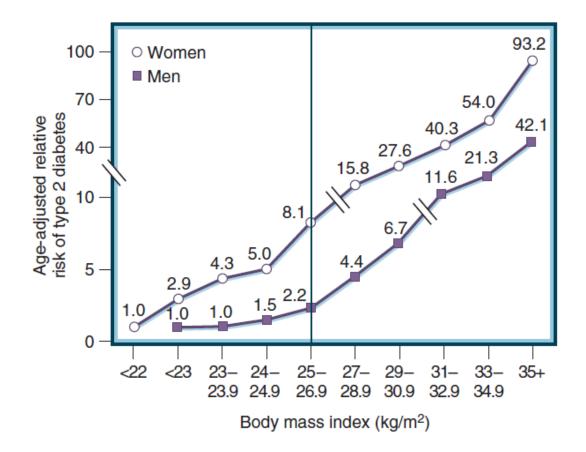
NICE 2014

JASSO 2016


UAE 2018


ENDO/ESE/TOS 2015 AHA/ACC/TOS 2013

AACE/TOS/ASMBS 2013


IDF 2011

The principal goal in obesity management is to prevent or treat obesity-related comorbidities

Relationship between body mass index and cardiovascular mortality risk in men and women in the United States who never smoked and had no preexisting illness.

Relationship between body mass index and type 2 diabetes in men and women in the United States.

Defining obesity

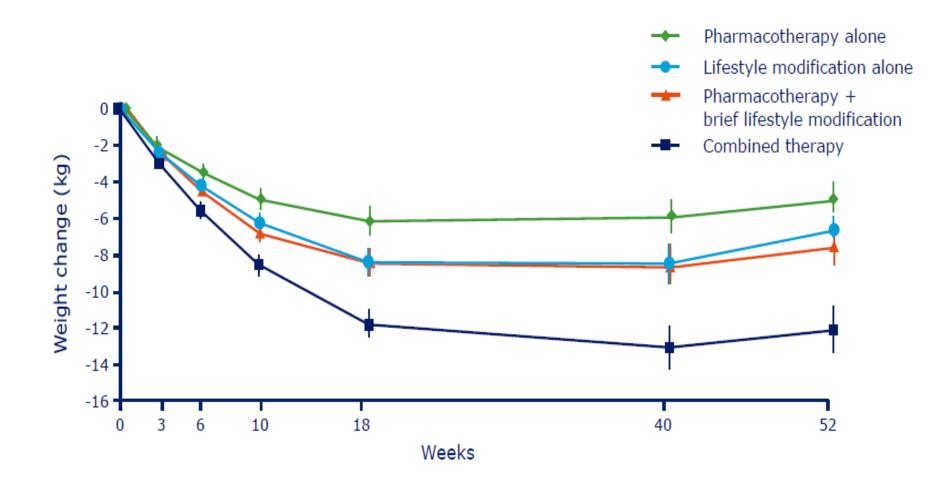
WHO guidelines for classifying obesity

WHO classification	BMI cut-off points for definition (kg/m²)	Cardiovascular disease risk	Asian BMI cut-off points for action (kg/m²)
Underweight	<18.5		<18.5
Normal range	18.5-24.9	Low	18.5-22.9
Overweight	25.0-29.9	Moderate	≥23.0
Obesity class I	30.0-34.9	High	27.5-32.4
Obesity class II	35.0-39.9	Very high	32.5-37.4
Obesity class III	≥40.0	Very high	≥37.5

Defining obesity

Measures used across all guidelines

	Measures used to classify obesity						
	ВМІ	Waist circumference	Complications				
AACE/ACE 2016	✓	· ·					
Canadian Task Force 2015	✓						
EASO 2015	✓	✓	✓				
NICE 2014	✓	✓					
JASSO 2016	✓						
UAE 2018	✓						
ENDO/ESE/TOS 2015	✓		✓				
AHA/ACC/TOS 2013	✓	✓					
EASD/ADA 2018	✓						
ADA 2018*	✓						
AACE/TOS/ASMBS 2013*	✓						
IDF 2011*	✓						


^{*}Only relates to patients with T2D. AACE, American Association of Clinical Endocrinologists; ACC, American College of Cardiology; ACE, American College of Endocrinology; ADA, American Diabetes Association; AHA, American Heart Association; ASMBS, American Society for Metabolic & Bariatric Surgery; EASO, European association for the study of obesity; ENDO, Endocrine Society; ESE, European Society of Endocrinology; IDF, International Diabetes Federation; JASSO, Japan Society for the Study of Obesity; NICE, National Institute for Health and Care Excellence; TOS, The Obesity Society; UAE, United Arab Emirates

EASO: European Guidelines for Obesity Management in Adults 2015

	WC*			
BMI, kg/m ^{2*}	Men <94 Women <80	Men ≥94 Women ≥80	Complications	
25.0-29.9	Lifestyle intervention	Lifestyle intervention	Lifestyle intervention ± Drugs	
30.0-34.9 drug	Lifestyle intervention	Lifestyle intervention ± Drugs	Lifestyle intervention ± Drugs ± Surgery [†]	
35.0-39.9 surgery	Lifestyle intervention ± Drugs	Lifestyle intervention ± Drugs	Lifestyle intervention ± Drugs ± Surgery	
≥40.0	Lifestyle intervention ± Drugs ± Surgery	Lifestyle intervention ± Drugs ± Surgery	Lifestyle intervention ± Drugs ± Surgery	

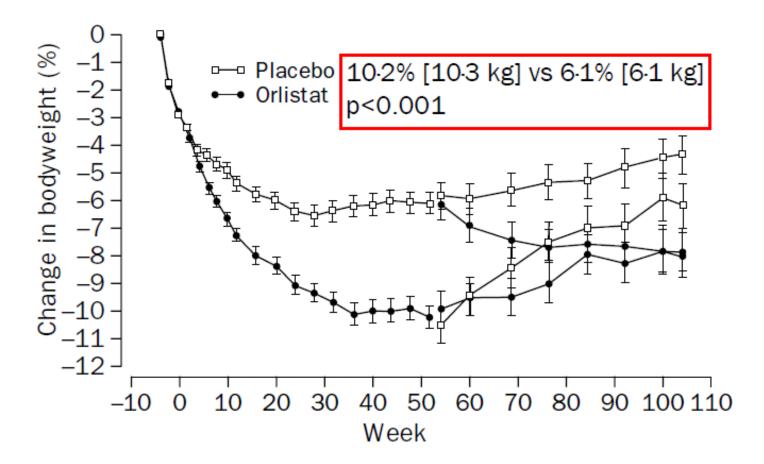
Medical therapy in obesity

>	First, not every drug works for every patient; individual responses vary
	widely.
>	Second, when the maximal therapeutic effect is achieved, a plateau is reached
	and weight loss ceases.
>	Finally, when drug therapy is discontinued, weight gain can be expected.

There are **responders** and **non-responders** to the anti-obesity drugs. A 5% weight loss should be achieved after 3-month treatment. > If this is not the case, the **anti-obesity drug should be interrupted.**

Dominique Durrer Schutz. Obes Facts 2019;12:40–66

Short-term treatment (3 to 6 months) using weight-loss


medications has not been demonstrated to produce longer-term

health benefits and cannot be generally recommended based on

scientific evidence.

			Mode of action
Orlistat (Xenical, Alli)	$\sqrt{}$	√	Energy wastage
Phentermine/topiramate (Qsymia)	×	$\sqrt{}$	Appetite suppression
Lorcaserin (Belviq, Belviq XR)	×	√	Appetite suppression
Naltrexone/bupropion (Mysimba, Contrave)	√	√	Appetite suppression
Liraglutide 3.0 mg (Saxenda)	$\sqrt{}$	√	Appetite suppression

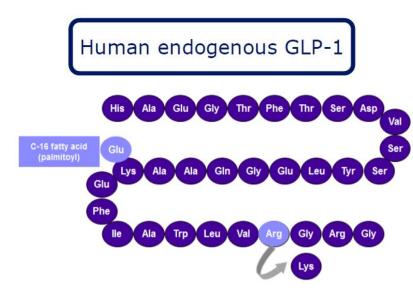
Antiobesity medication Year of FDA approval	Mechanism of action	Dose	Common side effects	Contraindication	Monitoring and comments
Orlistat	Lipase inhibitor	60-120 mg Before meal	Steatorrhea	Pregnancy	Cholelitiasis
1999			Fecal urgency Incontinance	Breaast feeding	Nephrolitiasis
				Chronic	Recommend
			Decreased	malabsorption	standard
			absorption of		multivitamin
			fat soluble	Cholestasis	(to include
			vitamines		vitamins A,D,
					E, and K) at
			Warfarin		bedtime or 2
			(enhance)		hours after
			Anti-epileptics		orlistat dose
			(decrease) Levothyroxine		
			(decrease)		
			Cyclosporine		
			(decrease)		

Lars Sjöström, et al, THE LANCET, 1998, Vol 352.

- > Trials have found that **Orlistat**, when used in combination with a diet and lifestyle program, leads to a **modest reduction in weight in CKD patients**.
- There are concerns that Orlistat can increase the risk of **oxalate nephropathy** and **renal stones** particularly in patients with renal impairment.
- No studies currently exist evaluating the safety or efficacy in renal transplant populations.
- As Orlistat interferes with cyclosporine absorption, and it should not be prescribed to patients on Cyclosporin.
- ➤ The effect of Orlistat on calcineurin inhibitors such as Tacrolimus have also not been tested.

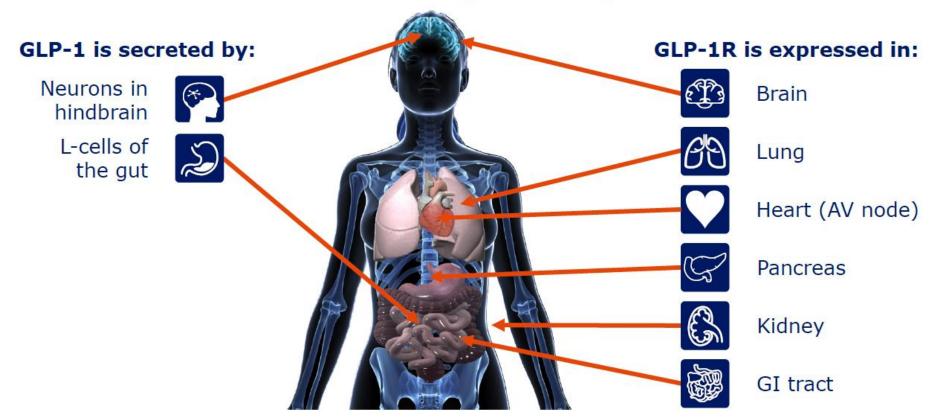
Anti obesity medication Year of FDA approval	Mechanism of action	Dose	Common side effects	Contraindication	Monitoring and comments
Lorcaserin 2012	Serotonin (5HT2c) receptor agonist (reduces appetite and food intake)	10 mg BID 3.6% 1 year	Headache Nausea Dry mouth Dizziness Fatigue constipation	Pregnancy Breast feeding Concomitant use of SSRI, SNRI, MAOI	Symptoms of cardiac valve disease Bradycardia Serotonin syndrome Neuroleptic malignant syndrome Depression

Anti obesity medication Year of FDA approval	Mechanism of action	Dose	Common side effects	Contraindication	Monitoring and comments
Phentermine/ Topiramate	NE release (P)	starting dose: 3.75/23 qd	insomnia dry mouth	Pregnancy breast feeding	Increased heart rate
2012	GABA modulation (T)	recommended dose: 7.5/46 qd	constipation Paresthesia	glaucoma hyperthyroidism	Hypokalemia (especially with HCTZ or furosemide)
	(suppresses appetite)	high dose: 15/92 qd 1yr: 6.6%	dizziness dysgeusia	Concomitant MAOI use (within 14 days)	Acute kidney stone formation
		(recommended dose) 8.6% (high dose)			Hypoglycemia in patients having T2DM treated with insulin and/or sulfonylureas

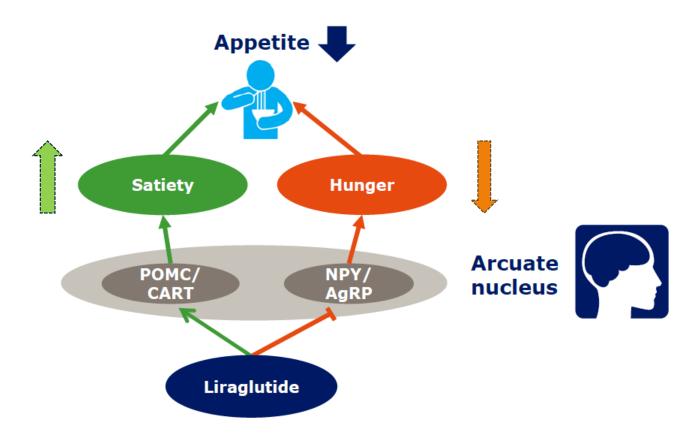

•

Anti obesity medication Year of FDA approval	Mechanism of action	Dose	Common side effects	Contraindication	Monitoring and comments
Bupropione/naltrexone 2014	DA/NE reuptake inhibitor(B) opioid antagonist (N)	8/90 mg tb 2 tb bid (titrate during 4 wk) 4.8% 1 year	Nausea constipation Headache vomiting dizziness	uncontrolled hypertension seizure anorexia nervosa / bulimia drug or alcohol withdrawal	Increased HR and BP Worsening of migraines Liver injury (naltrexone) Hypoglycemi a in patients T2DM Seizures (bupropion)

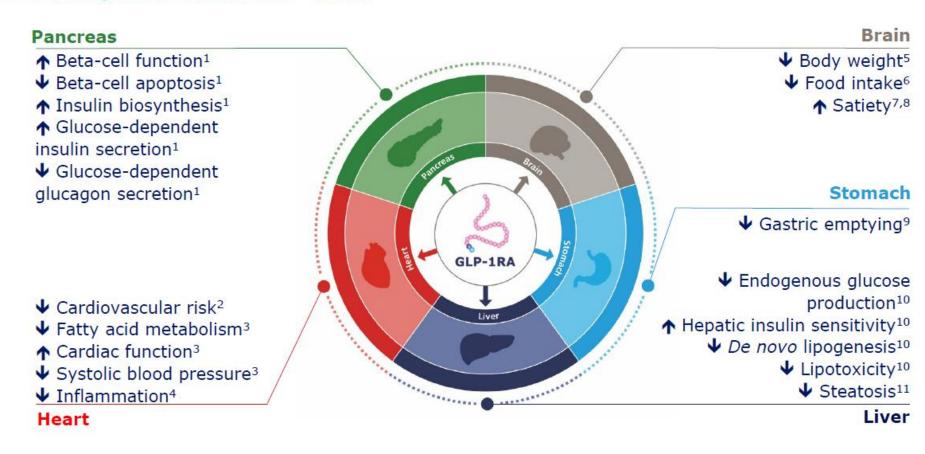
Anti obesity medication Year of FDA approval	Mechanism of action	Dose	Common side effects	Contraindication	Monitoring and comments
Liraglutide (saxenda) 2014	GLP-1 agonist	3 mg/day/sc	nausea, vomiting, pancreatitis	medullary thyroid cancer history MEN type 2 history	acute pancreatitis acute gall bladder disease Increased heart rate Injection site reactions

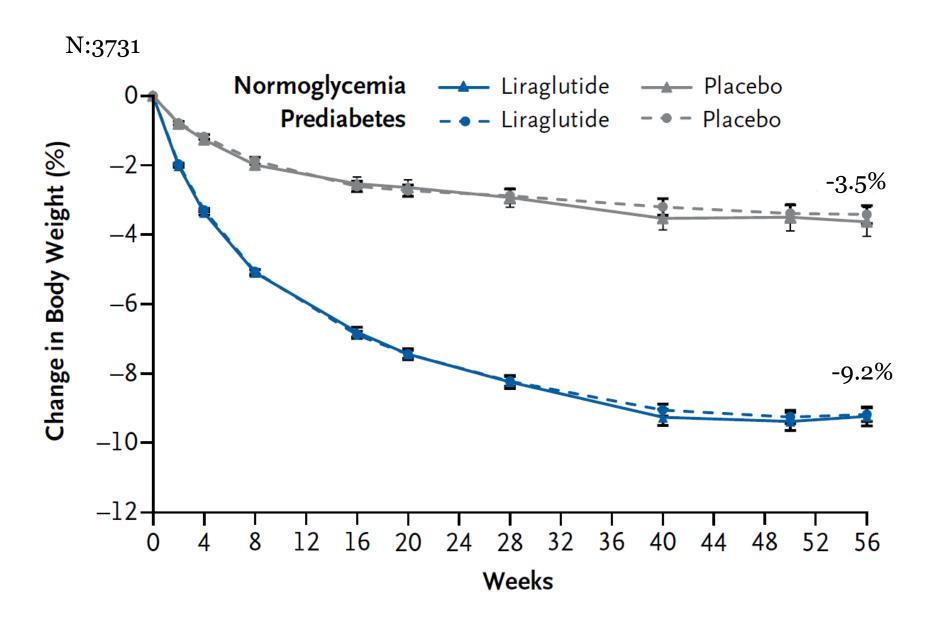

What is GLP-1?

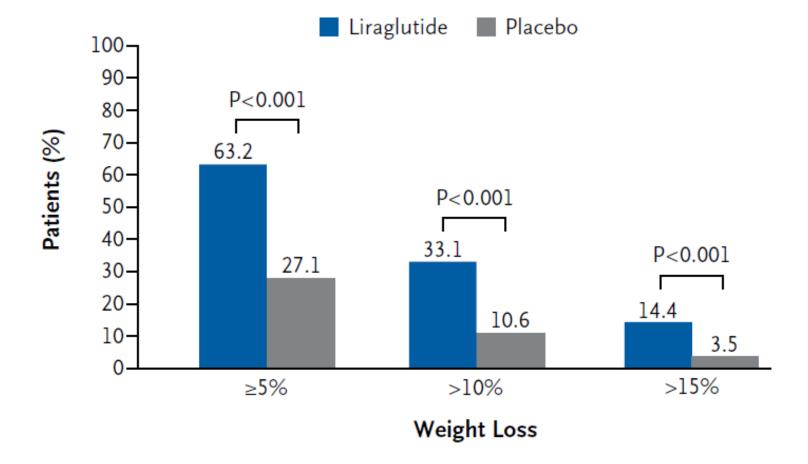
- GLP-1 is a peptide comprised of 31 amino acids
- Member of incretin family
- Secreted predominantly from L-cells in the gut, but also the brain (nucleus tractus solitarius)


Enzymatic degradation by DPP-4 $t_{1/2}$ =1.5-2 min

GLP-1 secretion and receptor expression

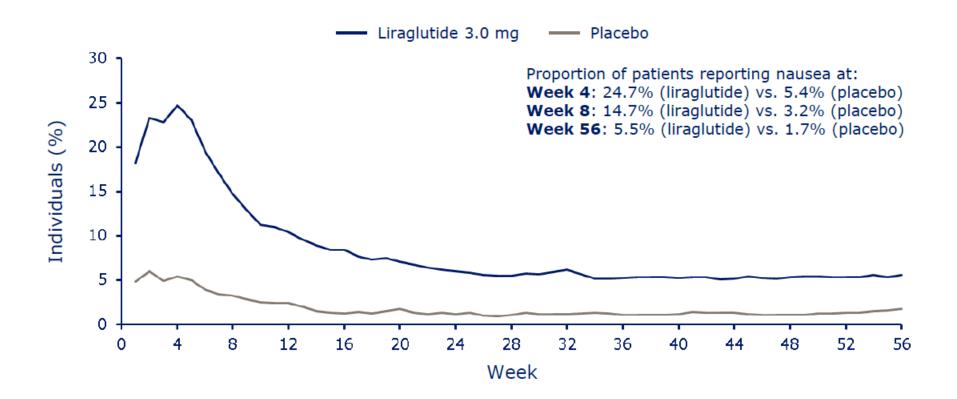

Liraglutide increases satiety and reduces hunger


Via neurons in the arcuate nucleus

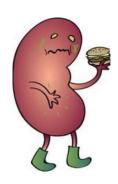


GLP-1RAs have multifactorial effects

Pharmacological effects of GLP-1RAs


Pi-Sunyer et al. N Engl J Med 2015;373:11–22

Changes in Cardiometabolic Risk Factors between Baseline and Week 56


End Point	Liraglutide (N=2437)	Placebo (N = 1225)	Estimated Treatment Difference, Liraglutide vs. Placebo (95% CI)†	P Value
Vital signs				
Systolic blood pressure (mm Hg)	-4.2±12.2	-1.5±12.4	-2.8 (-3.56 to -2.09)	<0.001
Diastolic blood pressure (mm Hg)	-2.6±8.7	-1.9±8.7	-0.9 (-1.41 to -0.37)	<0.001
Pulse (beats/min)	2.5±9.8	0.1±9.5	2.4 (1.9 to 3.0)	<0.001
Fasting lipid profile				
Cholesterol (%)				
Total	-3.1	-1.0	-2.3 (-3.3 to -1.3)	<0.001
LDL	-3.0	-1.0	-2.4 (-4.0 to -0.9)	0.002
HDL	2.3	0.7	1.9 (0.7 to 3.0)	0.001
VLDL	-13.1	-5.5	-9.1 (-11.4 to -6.8)	<0.001
Non-HDL	-5.1	-1.8	-3.9 (-5.2 to -2.5)	<0.001
Triglycerides	-13.3	-5.5	-9.3 (-11.5 to -7.0)	<0.001
Free fatty acids	1.7	3.5	-4.2 (-7.3 to -0.9)	0.01
LDL HDL VLDL Non-HDL Triglycerides	-3.0 2.3 -13.1 -5.1 -13.3	-1.0 0.7 -5.5 -1.8 -5.5	-2.4 (-4.0 to -0.9) 1.9 (0.7 to 3.0) -9.1 (-11.4 to -6.8) -3.9 (-5.2 to -2.5) -9.3 (-11.5 to -7.0)	0.0 0.0 <0.0 <0.0

Proportion of individuals with nausea

0-56 weeks

- There have been reports of **acute renal failure with saxenda**, sometimes requiring hemodialysis.
- A majority of the reported events occurred in patients who had experienced nausea, vomiting, or diarrhea leading to volume depletion.
- There is **limited experience** with Saxenda in patients with **mild, moderate,** and severe renal impairment, including end-stage renal disease.
- > Saxenda should be used with **caution** in this patient population.
- > Saxenda shoud be avoided in GFR<30

Identification of Adults with CKD Who Will Benefit from Weight Loss

- > Decrease the rate of CKD progression
- Decrease albuminuria
- ➤ Improve HTN, DM,DLP, CVD outcomes
- Decrease mortality

Obesity paradox

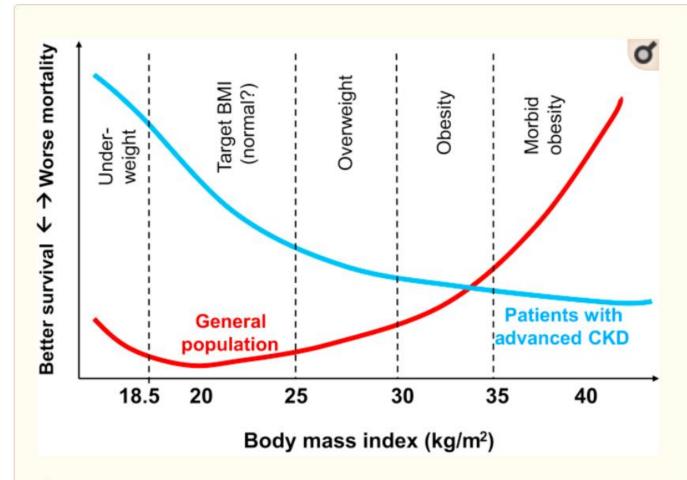


Figure 1

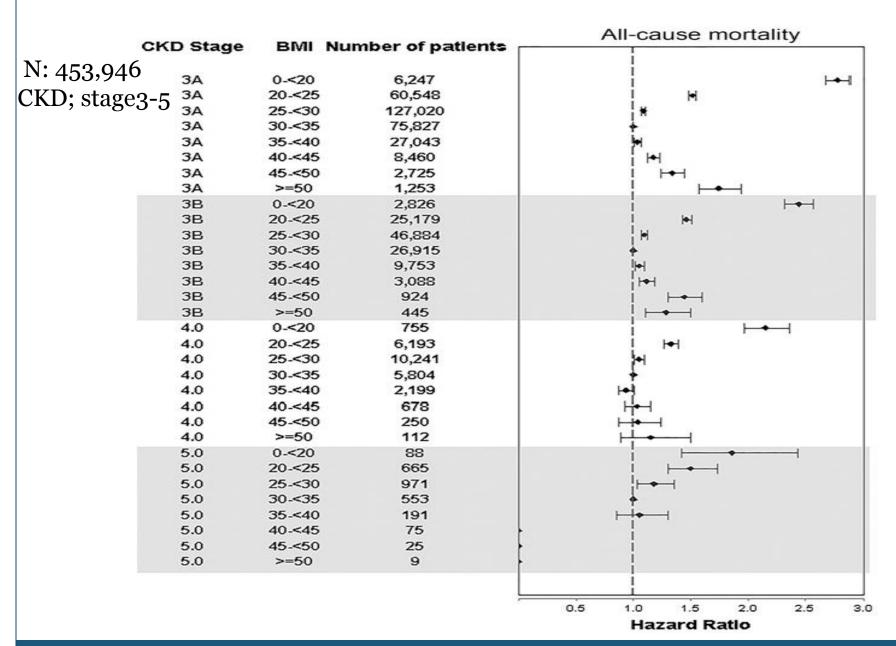
Reverse association of body mass index (BMI) and survival in patients with advanced chronic kidney disease (CKD) as compared to the general population.

➤ Non-dialysis dependent – chronic kidney disease

> Hemodialysis patients

> peritoneal dialysis patients

> Candidate for kidney transplant


kidney transplant recipients

Non-dialysis dependent-chronic kidney disease

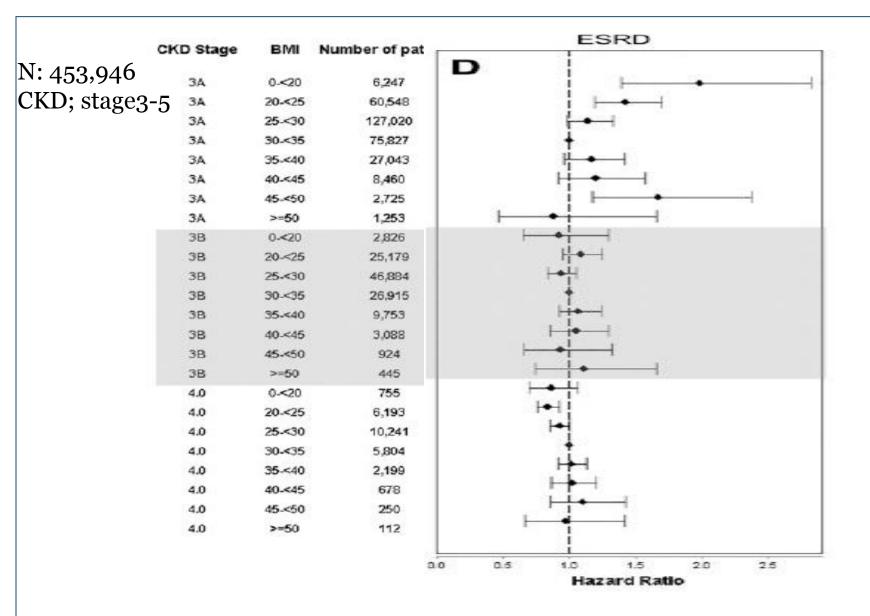


Table 2. Changes in Clinical and Biochemical Variables in the Two Groups

N: 30 CKD;		Diet Group			Control Group	
Stage1-2	Baseline	Month 1	Month 5	Baseline	Month 1	Month 5
Weight (kg)	87.5 ± 11.1	85.5 ± 10.7*†	83.9 ± 10.9*†‡	96.1 ± 16.6	96.5 ± 16.3	98 ± 16.4*†§
	(62.2-103.6)	(61.5-101.7)	(57.7-102.8)	(77.4-133.5)	(79.6-134)	(81.1-135.2)
BMI (kg/m ²)	33 ± 3.5	$32.2 \pm 3.2^*\dagger$	$31.6 \pm 3.2^{*} + 1$	34.3 ± 5.7	34.5 ± 5.7	$35 \pm 5.8^{+}$ §
	(28-42.2)	(27.2-40.2)	(26.7-40)	(27.9-47.8)	(27.8-48)	(27.7-48.4)
Systolic blood pressure	140 ± 24.1	141.8 ± 20.5	138.5 ± 14.1	135 ± 12.4	140.4 ± 8	140.4 ± 18.3
(mm Hg)	(110-210)	(110-180)	(110-160)	(120-160)	(130-155)	(110-170)
Diastolic blood pressure	79.6 ± 8.3	80.4 ± 9.3	76.6 ± 8.8	83 ± 9.7	84.3 ± 9.2	88.5 ± 11.1
(mm Hg)	(70-90)	(65-95)	(69-96)	(70-100)	(69-98)	(60-100)
Serum creatinine (mg/dL)	1.5 ± 0.7	1.4 ± 0.8	1.5 ± 0.8	1.6 ± 0.5	1.8 ± 0.6	1.8 ± 0.6*†
	(0.7-3.2)	(0.6-3.4)	(0.7-3.5)	(1-2.7)	(1-3)	(1.2-2.9)
Creatinine clearance	68.1 ± 33.6	69.2 ± 33.8	67 ± 34.1	61.8 ± 22.1	56.92 ± 21.7*	56 ± 19.9*†
(mL/min/1.73 m ²)	(25.9-151.2)	(24.2-131.2)	(26.4-129.8)	(29.8-90.7)	(26.5-90.3)	(27.7-83.5)
Total cholesterol (mg/dL)	213.2 ± 52.5	216.9 ± 52.6	210.8 ± 38.8	209.3 ± 39.5	222.1 ± 36.4	224.6 ± 36.4*
, ,	(115-330)	(128-318)	(134-298)	(148-263)	(159-269)	(160-265)
HDL cholesterol (mg/dL)	41.4 ± 11.9	45.2 ± 8.8	53.6 ± 10.2*†§	41.5 ± 10.6	46.3 ± 11.7	59.6 ± 31.1*
, ,	(21-67)	(33-63)	(38-67)	(26-59)	(34-64)	(34-138)
LDL cholesterol (mg/dL)	142.2 ± 35.2	149.4 ± 44.6	131.5 ± 27.6§	133.5 ± 32.1	141.3 ± 25.5	128.9 ± 36.2
, ,	(62-190)	(60-241)	(73-172)	(84-175)	(102-185)	(84-193)
Triglycerides (mg/dL)	114 ± 50.6	110.5 ± 31.4	112.4 ± 41.7	,	151.9 ± 55.6	179.2 ± 81.4
	(48-250)	(58-160)	(58-222)	(91-229)	(84-264)	(71-298)
Urinary sodium (mEq/24 h)	209.8 ± 58.5	194.7 ± 58.6	201.2 ± 57	192 ± 95.5	166.4 ± 61.4	188.8 ± 75.1
,	(124-324)	(100-320)	(95-339)	(54-364)	(69-241)	(52-292)
Urinary urea (g/24 h)	32.6 ± 8.1	27.4 ± 7.1	29.8 ± 6.2	30.9 ± 9.7	24.3 ± 10.1	28.3 ± 15
,, (3· <u>_</u> · · · ·)	(21.4-42.3)	(16-48.2)	(14.6-38.3)	(18.4-48.3)	(8.4-39.8)	(7.8-53)
Proteinuria (g/24 h)	$\frac{2.8 \pm 1.4}{}$	2 ± 1.5*†	$1.9 \pm 1.4^{+}$	3 ± 2.2	3.1 ± 1.9	3.5 ± 2.1
(3)	(1-6.6)	(0.5-7.7)	(0.3-6.4)	(1-7.8)	(1.2-6.8)	(0.7-8.1)

Lu JL, JAm Soc Nephrol. 2014;25:2088-2096

N: 920

CKD; stage 4-5

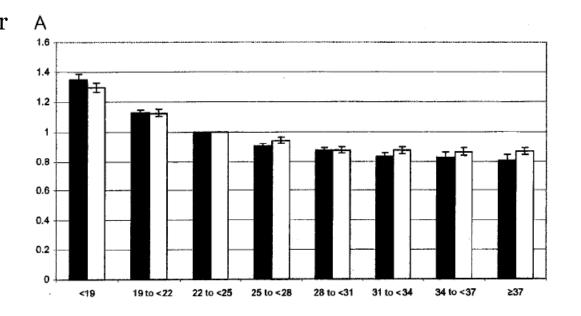
Follow up: 4 yr

Table 2. Hazard Ratios From Cox Regression Models for Time to RRT in 920 Patients With CRF

	Crude Relative		
	Risk	aRR*	95% CI
Age (y)			
<45	1.00	Reference	
45-64	0.99	0.95	0.78-1.17
≥65	0.77	0.72	0.57-0.90
Sex			
Female	1.00	Reference	
Male	1.32	1.59	1.35-1.88
BMI (kg/m ²)			
≤20	1.23	1.26	0.95-1.67
20.1-25	1.00	Reference	
25.1-30	0.81	<mark>0.7</mark> 9	0.67-0.94
>30	0.85	0.86	0.68-1.07
Primary renal disease			
4.004.00		Reference	
Glomerulonephritis Diabetes	1.14	1.24	1.02-1.51
2.000			
Hereditary disease	0.93 0.82	1.05 0.86	0.81-1.36 0.68-1.10
Nephrosclerosis Other	0.82	0.79	0.63-0.99
GFR (mL/min)	0.77	0.79	0.63-0.99
≥18.5	1.00	Reference	
≥16.5 16.7-18.4	0.89	1.20	0.96-1.50
13.7-16.6	1.11	1.52	1.21-1.91
<13.7	1.67	2.27	1.83-2.82
P for trend < 0.0001	1.07	2.21	1.03-2.02

N: 920

CKD; stage 4-5 Follow up: 4 yr Table 3. Hazard Ratios From Cox Regression Models for Time to Death in 920 Patients With CRF


	Crude Relative Risk	aRR*	95% CI
Age (y)			
<45	1.00	Reference	
45-64	3.69	2.83	1.66-4.80
≥65	9.98	5.23	3.06-8.95
Sex			
Female	1.00	Reference	
Male	1.07	1.19	0.94-1.50
BMI (kg/m ²)			
≤20	1.49	1 <mark>.9</mark> 6	1.35-2.84
20.1-25	1.00	Reference	
25.1-30	1.10	0.81	0.64-1.02
>30	0.95	0.70	0.51-0.97
Primary renal disease			
Glomerulonephritis	1.00	Reference	
Diabetes	3.55	3.13	2.25-4.34
Hereditary disease	0.70	1.14	0.64-2.03
Nephrosclerosis	2.50	1.56	1.08-2.27
Other	2.70	1.71	1.20-2.44

^{*}Adjusted for age, sex, BMI, primary renal disease, GFR at inclusion, and transplantation during follow-up.

Hemodialysis patients

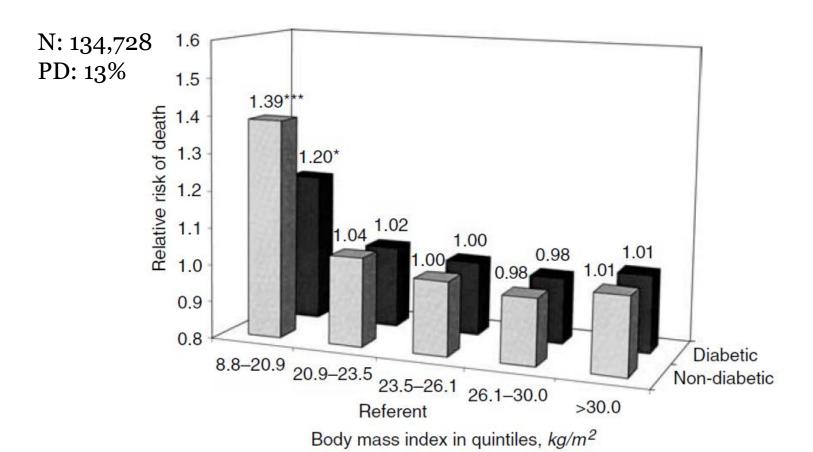
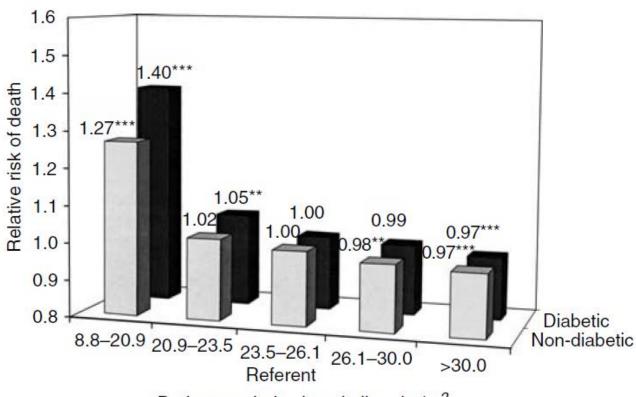

N: 418,055 HD: up to 5 yr Follow-up: 2 yr

FIGURE1. Hazard ratios for death among men (**□**) and women (□) by category of BMI.

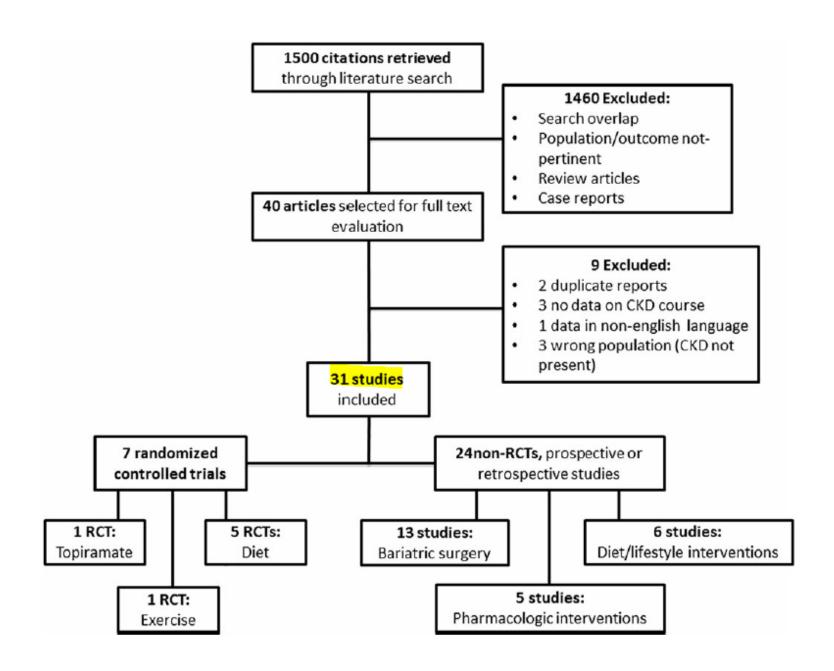

peritoneal dialysis patients

Relative risk of death by body mass index (BMI) quintile for new end-stage renal disease(ESRD)patients treated with peritoneal dialysis.

N: 134,728 HD: 87%

Body mass index in quintiles, kg/m²

Relative risk of death by body mass index (BMI) quintile for new end-stage renal disease (ESRD) patients treated with hemodialysis.

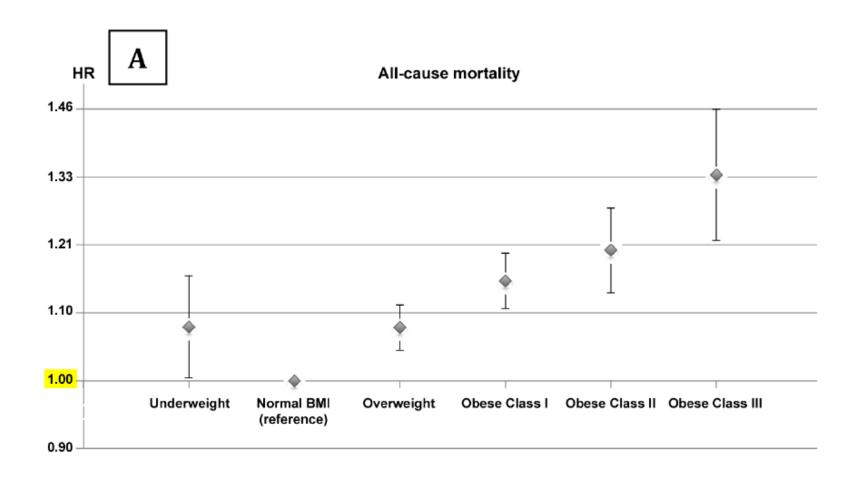

Nephrol Dial Transplant (2013) 0: 1–17 doi: 10.1093/ndt/gft302

Full Review

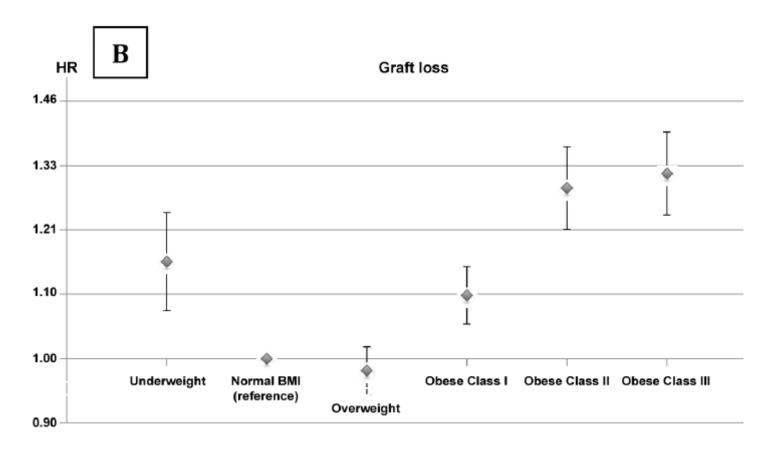
Effects of weight loss on renal function in obese CKD patients: a systematic review

Davide Bolignano* and Carmine Zoccali Clinical Epidemiology and Pathophysiology of Renal Diseases and Hypertension of Reggio Calabria, CNR-IBIM, Reggio Calabria, Italy

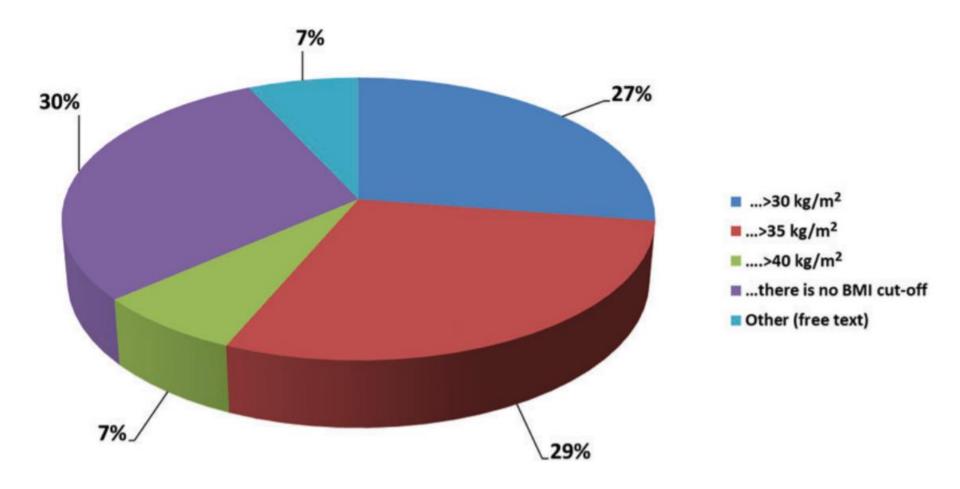
Baseline alterations in renal Function included:


- Hyperfiltration
- Pathological albuminuria
- Overt CKD
- HD

Non-surgical intervention leads to:


- Short-term weight reduction
- Improvements in BP, lipide profile, and proteinuria
- Diffèrent pattern of change in GFR

kidney transplant candidates



Revealed the adjusted HRs of 'all-cause mortality'.

Revealed the adjusted HRs 'graft failure'

kidney transplant recipients

Approximately one-third of post-transplant patients gain weight due to:

- Increased appetite
- Less dietary restriction due to normalization of renal function
- Initial inactivity following surgery
- General well-being post transplantation
- Medications such as steroids

Post-Transplant Weight Gain and Graft Loss

Follow up: 1yr

N: 292

Table 4: Cox model: hazard ratio estimates graft loss and 95% confidence intervals (model 2)

		Hazard		
Variable	Category	ratio	95% CI	p-value
Creatinine clearance	≥50	1	_	
(mL/min)	< 50	4.72	[1.63; 13.69]	0.004
Urinary protein	< 0.5	1		
excretion (g/day)	≥0.5	3.21	[1.27; 8.18]	0.014
Variation in BMI (%)	≤5	1		
	>5	2.82	[1.11; 7.44]	0.015
Metabolic syndrome	Absent	1		
	Present	1.65	[0.69; 4.22]	0.31
Delayed graft function	No	1		
	Yes	2.61	[1.07; 6.39]	0.036
Low-grade	CRP < 3	1		
inflammation (mg/L)	CRP ≥ 3	2.02	[0.84; 5.12]	0.10

Who is appropriate candidate for weight loss therapy?

Weight management strategies for those with chronic kidney disease – a consensus report from the Asia Pacific Society of Nephrology and Australia and New Zealand Society of Nephrology 2016 renal dietitians meeting

Short title: Weight management consensus report

Corresponding author details:

>	Weight loss in obese adults who have mild to moderate CKD results in a significant
	decrease in proteinuria and albuminuria, irrespective of the weight loss strategy applied
>	There is no strong recommendation for weight loss in patient with severe CKD .
>	There is inadequate evidence to support intentional weight loss in overweight or obese
	kidney transplant candidates.

- To prevent excessive weight gain, Kidney transplant recipients should be referred to a dietitian as soon as practicable after transplantation, for preventing weight gain.
- Following kidney transplantation, **maintain ideal body weight** by **healthy diets** and **regular exercise.**
- ➤ **Orlistat** can lead to sub-therapeutic immunosuppressive levels.
- Consider bariatric surgery for the morbidly obese patient who has been unable to lose weight by these means, and especially in the presence of HTN, DM and sleep apnea.

summary

Mild-moderate CKD	Benefit from weight loss with any strategy.
Severe CKD (HD)	No obvious benefit (obesity paradox)
Candidate for kidney transplant	Individualized (BMI: 30-35 kg/m ² associated with best results)
Kidney recipients	Benefit from weight loss (lifestyle intervention and bariatric surgery)

Preferred weight loss medication: individualization of therapy

preferred drug		with	caution	avoid	
	Orlistat	lorcaserin	Phentermin/ topiramate	Naltroxen/ bupropione	Liraglutide 3 mg
Mild CKD					
Moderate CKD			Dose adjustment	Dose adjustment	
Severe CKD (HD)	Monitor for oxalat nephropathy				Avoid vomiting dehydration
Kidney recipients					
Nephrolithiasis	Ca oxalate stone		Ca phosphate stone		

The ideal BMI and the best ways to achieve this BMI need to

be established in CKD patients.